Some results on pre-monotone operators

نویسندگان

  • M. Roohi Department of Mathematics‎, ‎Faculty of Sciences‎, ‎Golestan University‎, ‎P.O‎. ‎Box ‎155‎, ‎Gorgan‎, ‎Iran.
  • M.H. Alizadeh Department of Mathematics‎, ‎Institute for Advanced Studies in Basic Sciences (IASBS)‎, ‎Zanjan‎, ‎Iran‎.
چکیده مقاله:

‎In this paper‎, ‎some properties of pre-monotone operators are proved‎. ‎It is shown that in a reflexive Banach space‎, ‎a full domain multivalued $sigma$-monotone operator with sequentially norm$times$weak$^*$ closed graph is norm$times$weak$^*$ upper semicontinuous‎. ‎The notion of $sigma$-convexity is introduced and the‎ ‎relations between the $sigma$-monotonicity and $sigma$-convexity is investigated‎. ‎Moreover‎, ‎some results on the sum and difference of two $sigma$-monotone operators is considered.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Homogenization and Corrector Results for Nonlinear Monotone Operators

This paper deals with the limit behaviour of the solutions of quasi-linear equations of the form − div (a (x, x/εh, Duh)) = fh on Ω with Dirichlet boundary conditions. The sequence (εh) tends to 0 and the map a(x, y, ξ) is periodic in y, monotone in ξ and satisfies suitable continuity conditions. It is proved that uh → u weakly in H 1,2 0 (Ω), where u is the solution of a homogenized problem − ...

متن کامل

Correctors for Some Nonlinear Monotone Operators

In this paper we study homogenization of quasi-linear partial differential equations of the form −div (a (x, x/εh, Duh)) = fh on Ω with Dirichlet boundary conditions. Here the sequence (εh) tends to 0 as h → ∞ and the map a (x, y, ξ) is periodic in y, monotone in ξ and satisfies suitable continuity conditions. We prove that uh → u weakly in W 1,p 0 (Ω) as h → ∞, where u is the solution of a hom...

متن کامل

On surjectivity of some classes of generalized monotone operators

We present results for the existence of solutions for variational inequalities given by generalized monotone operators. As a consequence we establish surjectivity, and we obtain, in particular, results for the existence of zeroes of some class of set-valued operators. Furthermore, by strengthening the continuity assumption on the operator, we deduce its surjectivity without any monotonicity ass...

متن کامل

Some Results on the Extension of Operators

1. C. Chevalley and A. Weil, Über das Verhaken der Integrale. 1. Gattung bei Automorphismen des Funktionenkörpers, Abh. Math. Sem. Univ. Hamburg 10 (1934), 358-361. 2. R. C. Gunning, Lectures on modular forms, Princeton Univ. Press, Princeton, N. J., 1962. 3. J. Lewittes, Automorphisms of compact Riemann surfaces. Thesis, Yeshiva University, New York, 1962. 4. B. Schoeneberg, Über die Weier str...

متن کامل

Monotone operators on Gödel logic

4 We consider an extension of Gödel logic by a unary operator that enables the addition of nonnegative reals to truth-values. Although its propositional fragment has a simple proof system, first-order validity is Π2-hard. We explain the close connection to Scarpellini’s result on Π2hardness of Łukasiewicz’s logic.

متن کامل

Some Results for Hausdorff Operators

In this paper, we give the sufficient conditions for the boundedness of the (fractional) Hausdorff operators on the Lebesgue spaces with power weights. In some special cases, these conditions are the same and also necessary. As an application, we obtain a better lower bound of fractional Hardy operators on the Lebesgue spaces compared with a result of the paper [25]. Mathematics subject classif...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 6

صفحات  2085- 2097

تاریخ انتشار 2017-11-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023